
The MCP Model Checker

Sarah Thompson1, Guillaume Brat1, and Karl Schimpf2

1 NASA Ames Research Center, MS-269/2, Moffett Field, CA 94035-1000, USA
{thompson, brat}@email.arc.nasa.gov

2 Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
karlschimpf@gmail.com

Abstract. MCP is an explicit-state software model checker that sup-
ports the entire C++ programming language. In this paper, we describe
its architecture and present some initial results.

1 Introduction

The MCP3 model checker was constructed specifically to allow programs written
in C or C++ to be model-checked directly without requiring prior translation or
model extraction. It builds upon the LLVM4 compiler infrastructure [1], thereby
avoiding the requirement to directly recognise the (extremely complex) C++
language at source-level. This approach has allowed us to support the entire
C++ language [2], including templates. The C language [3] is handled separately
and fully, not just as an improper subset of C++.

1.1 Model Checking at NASA

NASA has been involved with research on software model checking for some
time. Our group at NASA Ames developed Java Pathfinder (JPF) [4], a publicly
available software model checker for the Java language, and also LTSA, a model
checker for state machines that supports compositional verification [5, 6]. Our
colleagues at the NASA Jet Propulsion Laboratory developed the well-known
SPIN model checker [7].

Experience from the JPF project has demonstrated the utility of software
model checking (i.e. model checking that acts directly on a program, rather than
on a model that has been manually extracted from it). However, current flight
software is mostly implemented in C, not Java, and in future it seems increasingly
likely that C++ will become the platform of choice. The MCP model checker was
developed to fill the requirement for an explicit-state software model checker, in
the style of JPF, that fully supports the C++ language.

Modified gcc

front-end

LLVM

optimiser

LLVM

bytecode

LLVM

bytecode

LLVM just-in-time

compiler

LLVM interpreter

LLVM

code generator

Native

executable

In-memory

native code

MCP

Fig. 1. Simplified LLVM architecture

1.2 LLVM

Fig. 1 shows a simplified version of the LLVM flow5. A modified version of the
gcc front-end is used to parse the C++ source code and to lower most of the
language’s constructs to a level closer to that of a typical C program. The original
gcc back-end is discarded in favour of emitting LLVM bytecode, which is then
optimised and passed on to various alternative back-ends.

One of the main motivating ideas behind LLVM was enabling whole pro-
gram optimisation, something that has been traditionally difficult to approach
with existing compiler architectures. The LLVM bytecode has been specifically
designed to support this and other kinds of optimisation – a Static Single As-
signment (SSA) representation [8] is adopted, making many analyses (including
ours) far more straightforward than they might otherwise be.

2 MCP Architecture

MCP is, in effect, a heavily modified, extended interpreter for LLVM bytecode
that supports threads, state abstraction and a variety of search strategies. No
attempt is made to extract a model from the code; rather, the code is exe-
cuted directly, trying all possible interleavings, with the intention of triggering
otherwise-deeply-hidden assertions.

Fig. 2 gives an outline of MCP’s internal structure. A bytecode interpreter,
closely based on LLVM’s original lli tool, has the responsibility of executing
3 Model checker for C Plus plus.
4 Low Level Virtual Machine
5 Many LLVM tools have been omitted here for clarity – LLVM is a large, rich toolset,

so we concentrate on the subsystems that are specifically relevant to MCP.

Memory subsystem

Versioning heap

Stack

Threading subsytem

emulator

Bytecode

interpreter

1 stack per

thread

User-supplied

threading model

State

queue

Fig. 2. MCP architecture

LLVM instructions. All memory access is mediated through a versioning memory
management subsystem that allows the system to be checkpointed at any time,
and for the system state to be rolled efficiently to any other saved checkpoint.
Threading is implemented in such a way as to allow user-supplied threading
subsystems to be loaded, thereby enabling the emulation of the majority of op-
erating system threading models. A state queue maintains the list of states that
have yet to be evaluated; manipulating the order in which states are added and
removed from this queue allows a variety of search strategies to be implemented.

2.1 Threading Subsystem Emulation

One of the trickier issues surrounding the model checking of C++ source code is
the fact that the language standard specifically does not mandate any particular
threading model. Real-time program semantics are therefore dependent upon
the execution environment, so any attempt to analyse multithreaded code must
inevitably make some kind of assumption about the underlying threading model.

At an early stage of the development of MCP it was unclear what kinds of
operating system platform might need to be supported, so it was not possible, for
example, to assume that any existing threading model (e.g., POSIX threads [9])
could act as a suitable infrastructure. Any implicit assumptions made about
threading have profound implications for the real-time semantics of programs,
so using one existing threading model to emulate another was thought to be too

dangerous. Furthermore, this approach may omit certain areas of functionality
that emulating new operating systems might require.

The approach adopted within MCP is very simple, though entirely generic.
At all times, a list of executing threads is maintained. MCP’s bytecode inter-
preter inner loop executes code fragments until such time as a non-thread-specific
memory access occurs – at this point, the state is checkpointed and the list of
executing threads is reexamined in order to identify which, if any, threads may
validly continue to execute. Entries are then placed in the state queue for each
executable thread that has been identified – when they are later evaluated, the
saved checkpoint is retrieved, and the thread is allowed to proceed for one step.
The inner loop continues until either an assertion is detected, or the state queue
is exhausted.

At first sight, this may not appear sufficient to allow the implementation
of any threading model. However, all threading models and all synchronisation
primitives, including real-time concepts such as interrupt service routines, ulti-
mately can be viewed simply as ways of choosing when threads may be preempted
and which thread may execute next.

MCP implements its own low-level API, on top of which arbitrary threading
models may be constructed. Threads are initiated either by calling mcp begin thread(),
which spawns a thread based upon executing a specific function, or by calling
mcp fork(), which makes a copy of the current thread modified in such a way
that the child thread perceives the function’s return value to be true and the
parent thread perceives it to be false. Threads are terminated either by simply
returning from the function or by explicitly calling mcp terminate thread() or
mcp kill thread() which respectively terminate the current thread or forcibly
terminate another thread given its handle. Threading packages must supply a
comparison function, which given a pair of thread handles a and b returns true iff
thread a can preempt thread b. The special thread handle MCP IDLE represents
a notional idle thread – any thread that can not preempt MCP IDLE is (by defini-
tion) blocked. The comparison function has the responsibility of checking any in-
ternal thread-specific synchronisation mechanisms that might be required – MCP
itself deliberately does not directly implement thread synchronisation. MCP uses
this function to perform a sort on the list of currently existing threads, then it
walks down from the highest priority thread until it finds the first thread that
can no longer execute, thereby identifying all currently executable threads. Since
this is the only scheduling information needed by MCP’s inner loop, no other
infrastructure is necessary within MCP itself.

Since thread comparison functions are called after every execution step, for
performance reasons, the LLVM just-in-time compiler mechanism is used to gen-
erate a native-code version of the comparison function that is then called on-
the-fly by the sort algorithm. This approach in early testing showed itself to be
orders of magnitude faster than executing the comparison function in the same
context as the program being model-checked – something that is particularly
important given that the thread list must be re-sorted after every execution
step.

2.2 Memory Management

The MCP memory management subsystem was specifically intended to allow
arbitrary search strategies to be adopted independently from its implementation.
As a consequence of this requirement, the following design criteria were adopted:

1. No order of evaluation should be assumed; it should be possible to load any
saved memory state at any time.

2. All states must be abstracted, in the sense that a statistically-likely-to-be-
unique hash is calculated.

3. For efficiency reasons, any algorithms related to the state tree should, where
feasible, operate in time and space linear to the amount of difference between
states.

To

predecessor

node

State

descriptor

Forward log

Reverse log

Forward log

Reverse log

Forward log

Reverse log

Forward log

Reverse log

State

descriptor

State

descriptor

State

descriptor

To

successor

nodes

Forward log

Reverse log

Forward log

Reverse log

Forward log

Reverse log

Forward log

Reverse log

Forward log

Reverse log

Fig. 3. State Tree

State Deltas. Fig. 3 illustrates the approach taken. States are represented by
unique state descriptors, each of which having a statistically unique hash. Any
successor states are referenced by the predecessor state and vice-versa, allowing
the state tree to be navigated efficiently.

When a state is checkpointed, a new state descriptor is created and linked
to its parent state. At all times, the memory management system maintains
an incremental hash that is updated whenever memory is allocated, freed or
modified, so at the time a checkpoint is generated, this simply needs to be copied
into the state descriptor’s data structure. As a consequence, checkpointing has
very little overhead.

As execution proceeds, two logs are accumulated associated with the current
state descriptor. The forward log stores changes to memory that occur as a con-
sequence of program execution, whilst the reverse log saves previous values in
such a way as to allow the changes recorded in the forward log to be undone. It
is therefore possible to reload any saved state by traversing the state tree along
well-defined edges and replaying the relevant logs. As an implementation conve-
nience, the forward log may also contain information about visited instructions,
visited source lines and user-supplied textual logging information – this extra
information is used when reporting counterexample traces in order to make them
more human-readable.

Saved states may be reloaded at any time by the following algorithm:

1. Initialise pointers c and d to the current and destination states in the state
tree.

2. Working toward the root of the tree from c and d, find a corner node a
representing the deepest common ancestor of c and d.

3. Starting at state c and traversing up the tree, replay all reverse logs until
the state has been regressed to that represented by the corner node a.

4. Working down the tree from a toward the destination state d, replay the
forward logs in sequence until the destination state is reached.

As well as the contents of the heap, saved states also include the current
stacks of executing and paused threads, as well as the current values of any
temporary variables used by the bytecode interpreter. Reloading a saved state
therefore leaves the interpreter immediately ready to continue execution at the
relevant point – states can therefore be evaluated in any order convenient to the
chosen search strategy without affecting the semantics of the program that is
being model-checked.

2.3 Search Strategies

As described in Section 3, states can be evaluated in any order, so there is no
implementation-specific requirement to restrict order of evaluation in any way.

The interpreter’s inner evaluation loop operates as follows:

1. Take the next state to be evaluated from the state queue.
2. Reload that state.
3. Evaluate instructions until a scheduling point is reached (normally a read or

write to non-thread-local memory, though certain MCP API calls may also
trigger scheduling).

4. Checkpoint the current state.
5. If the state has been encountered previously, ignore it and repeat immedi-

ately.
6. Add the state to the state tree.
7. Use the user-supplied threading subsystem to determine the (possibly empty)

list of successor states.

8. Insert those states into the state queue according to the chosen search strat-
egy.

9. Repeat until the state queue is empty.

With this approach, search strategies may be implemented very straightfor-
wardly, simply by affecting how and in what order states are added to the state
queue.

Breadth-first. Breadth-first search, MCP’s default, is implemented by adding
new states to the back of the search queue in arbitrary order. As the search
proceeds, depth is therefore kept as shallow as possible.

Depth-first. The MCP state queue is double-ended; depth-first search is im-
plemented by adding states to the front, rather than the back, of the queue,
with the state representing the next action of the current thread added last,
causing it to be executed next. Depth-first search is invoked by including the
-depth-first switch in the MCP command line.

Heuristic. In this mode, invoked by the -heuristic command-line switch,
MCP’s normal state queue is replaced by a priority queue that returns states in
descending order of a program-specified metric. The search is still complete, in
the sense that unless terminated early manually or by the discovery of a counter-
example, all states are still visited eventually, but the program under test can
influence the order of evaluation.

To use this feature, a program must nominate a variable of type volatile
int to hold the metric – whenever a state is added to the priority queue, this
value is read automatically and used to prioritise any successor states. For ex-
ample:

volatile int metric;

int main()

{

mcp_register_heuristic(&metric);

// ... Code under test can modify metric at any time ...

return 0;

}

This approach has the advantage that no per-execution-step overhead is in-
curred in evaluating the metric if it does not require updating. In use, if the
-heuristic switch is not given, MCP ignores calls to mcp register heuristic(),
making it possible to easily switch between search strategies without needing to
recompile the code under test.

Randomised. Randomised search, selected by the -random switch, is broadly
similar to breadth-first search, with the exception that next states are inserted
at randomly chosen positions within the state queue. As with the other search
strategies, randomised search is complete, and states are never revisited – de-
spite the superficial similarity, this search strategy should not be regarded as
equivalent to conventional randomised testing.

In practice, randomised search has a ‘look and feel’ somewhere between that
of breadth- and depth-first search, but in practice it appears to have far less
tendency than either to get stuck in local minima within the search space.

Interpret-only. For convenience, the -interpret-only switch causes MCP to
execute the program under test purely as an interpreter – no search per se is
performed. Since programs annotated with calls to the MCP API can not eas-
ily be executed natively without modification, this mode provides a convenient
means of executing programs conventionally within the MCP environment.

Programs executing in interpret-only mode are scheduled by a simple round-
robin scheduler executing on top of any threading emulation package that may
be in use. As usual, however, all instructions and visited source lines are logged,
and a counterexample trace is still generated if the program under test triggers
it.

2.4 C++ Language Issues

One of the main difficulties that exists in analysing the C or C++ programming
languages is the absence of a threading model in the language standard. As a
consequence of this, there can be no generically applicable approach to iden-
tifying opportunities for partial order reduction statically. Similarly, compiler
optimisations that are entirely safe for single-threaded code are not guaranteed
to be appropriate for multithreaded code.

LLVM Optimisations. LLVM’s approach of carrying out most of its opti-
mistions at the level of an internal representation based on SSA (Static Single
Assignment) form means that in its generated bytecode, there is a clear delin-
eation separating operations that would ideally be carried out (on a CPU with
sufficient resources) on a register-to-register basis, from those that are required
to act upon the heap.

Some of LLVM’s optimisations are actually a little too aggressive for our
purposes – small blocks of memory allocated by calls to malloc() can in certain
circumstances be lowered to a form where the data is handled entirely at the
register-to-register level, allowing the call to malloc() to be omitted, along with
much expensive pointer dereferencing. For single-threaded code, such optimisa-
tions do not affect the program’s observable functionality, but for multithreaded
code there is a problem with this approach: all threads share a single heap, but
since stacks are thread-local, all other data is not shared. Any program written
with an assumption that a particular heap address is shared by multiple threads

#include <mcp.h>

int main()
{
 volatile int *xxx = (volatile int *) malloc(sizeof(int));
 *xxx = 123;

 bool f = mcp_fork(1);

 if(f)
 {
 (*xxx) += 321;
 return 0;
 }

 mcp_printf("xxx = %d\n", *xxx);

 mcp_assert(*xxx == 444);

 return 0;
}

// Include �le containing de�nitions for the mcp API.

// Declare a volatile integer with storage on the heap

// and initialise it to 123.

// Fork a thread. The child thread sees f = true,

// whereas the parent thread sees f = false.

// The child thread adds 321 then terminates.

// Print what we see in the variable.

// Assert if we don’t get the ‘expected’ value, 444.

Fig. 4. Trivial race condition

runs the risk that this kind of optimisation strategy can break the program’s
semantics.

The C and C++ language standards both allow for variables to be marked
with the volatile storage class. Older compilers commonly ignored this at-
tribute, though this was rarely a problem since their relatively primitive opti-
misers didn’t perform dangerous modifcations of multithreaded semantics. As
a consequence of this, many programmers never learned to use volatile cor-
rectly, so there is a large amount of potentially unsafe legacy code in existence.
LLVM does take the volatile keyword seriously, generating quite different code
when it is used in comparison with the default case. Without the keyword, shared
memory locations are assumed to be thread-local, so they typically get optimised
away aggressively.

MCP’s Approach. Though performing static analysis on code in order to
identify opportunities for partial order reduction is a tempting goal, when C
or C++ is the source language, this is actually fraught with difficulties. As
mentioned previously (see Section 2.4), any such analysis requires knowledge of
what exactly constitutes a thread; something that can not be extracted from
the code as defined in the language standard alone. If it had been our intention
to base MCP upon a specific threading model, it may have been feasible to go
beyond this limitation, but our requirement to support many possible kernel
threading models has precluded this.

LLVM, by default, already tends to optimise code such that accesses to
heap (and therefore, accesses to memory that might possibly be shared between

threads) is kept to a minimum. Improving on this would essentially require an
alias analysis that is thread-sensitive, but since we can’t guarantee to be able
to identify threads, we can not safely take this approach. We therefore schedule
on heap accesses and do not attempt further analysis – in practice, LLVM’s ag-
gressive optimisation means that we lose relatively little by this, whilst having
the advantage of not risking unexpectedly incorrect semantics as a consequence
of failing to identify a thread statically.

3 Experimental Results

At the time of writing, MCP is at a relatively early stage of development, so no
large case studies have yet been attempted. For completeness, we include here
two small examples from MCP’s regression test suite.

3.1 Simple Race Condition

This is perhaps the simplest possible test case that still exhibits concurrent
behaviour. The annotated code is shown in Fig. 4.

Storage for a variable of type int is created on the heap, then initialised.
A child thread is spawned which increments the variable and then terminates
immediately. The MCP-built-in mcp printf function behaves similarly to the
C/C++ standard library function printf, with the exception that its output is
logged along with source line and instruction information, making it considerably
easier to decode counterexample traces.

Compiling and running the code in interpreted mode is straightforward:

% llvm-gcc simplerace.cpp -o simplerace

% mcp -interpret-only -stats simplerace.bc

MCP V0.1 (Sarah Thompson, USRA-RIACS/NASA Ames)

|0>|0>

*** Forked thread [1]

|1>

*** Thread 1 terminated.

|0>xxx = 444

===---===

... Statistics Collected ...

===---===

3 mcp - Number of context switches

31 mcp - Number of dynamic instructions executed

1 mcp - Number of created threads

10 mcp - Number of global vars initialized

167 mcp - Number of bytes of global vars initialized

Since MCP operates on LLVM bytecode, it is necessary to specify the .bc
extension on the file name. By default, the output is moderately verbose – spec-
ifying the -quiet command-line switch reduces this to a minimum. In this case,
simply interpreting the code with the default round-robin scheduler does not
encounter the race condition, so xxx always takes the value 444.

Running MCP in its default breadth-first search mode is more fruitful (the
output shown here is abridged slightly):

% mcp -stats simplerace.bc

MCP V0.1 (Sarah Thompson, USRA-RIACS/NASA Ames)

|0>|0:0>|0.0:0>*** Forked thread [1]

|0.0.0:1>|0.0.0:0>|0.0.0.1:0>|0.0.0.1:1>|0.0.0.0:1>|0.0.0.0:0>

xxx = 123

|0.0.0.1.0:0>xxx = 123

|0.0.0.1.0:1>|0.0.0.1.1:1>

*** Thread 1 terminated.

|0.0.0.1.1:0>|0.0.0.0.1:0>xxx = 123

|0.0.0.0.1:1>|0.0.0.0.0:1>|0.0.0.0.0:0>

===---===

... Statistics Collected ...

===---===

14 mcp - Maximum Queue Depth

16 mcp - Number of states visited

57 mcp - Number of dynamic instructions executed

1 mcp - Number of created threads

10 mcp - Number of global vars initialized

167 mcp - Number of bytes of global vars initialized

Assertion failure detected: simplerace.cpp, 21: Expression ’*xxx == 444’ returned false.

=== BEGIN STACK DUMP ===

--- Thread 0 (Running) ---

[mcp_break: BB=0x00000000, CS=0x00000000, IP=0x00000000, StkFrm=0x08996120]

[main: BB=0x0898d510, CS=0x0898d570, IP=0x0898ddd8, StkFrm=0x089960b8]

Caller: tail call void %mcp_break(sbyte* getelementptr ([41 x sbyte]* %.str_6, int 0, int 0),

sbyte* getelementptr ([15 x sbyte]* %.str_3, int 0, int 0), int 21)

--- Thread 1 (Running) ---

[main: BB=0x0898cd08, CS=0x00000000, IP=0x0898d270, StkFrm=0x0899e998]

=== END STACK DUMP ===

Decision trace:

Root: |0> (1 successor states)

thread: |0.0> (1

successor states)

simplerace.cpp(7): {

simplerace.cpp(8): volatile int *xxx = (volatile int *) malloc(sizeof(int));

%tmp.4 = malloc int ; <int*> [#uses=5]

simplerace.cpp(9): *xxx = 123;

volatile store int 123, int* %tmp.4

thread: |0.0.0> (2 successor states)

simplerace.cpp(11): bool f = mcp_fork(1);

%tmp.7 = tail call bool %mcp_fork(ulong 1) ; <bool> [#uses=1]

thread: |0.0.0.0> (2 successor states)

simplerace.cpp(13): if(f)

br bool %tmp.7, label %then.0, label %endif.0

simplerace.cpp(19): mcp_printf("xxx = %d\n", *xxx);

%tmp.16 = volatile load int* %tmp.4 ; <int> [#uses=1]

thread: |0.0.0.0.0> (2 successor states)

%tmp.13 = tail call int (sbyte*, ...)* %mcp_printf(sbyte*

getelementptr ([10 x sbyte]* %.str_5, int 0, int 0), int %tmp.16)

-- xxx = 123

simplerace.cpp(21): mcp_assert(*xxx == 444);

%tmp.18 = volatile load int* %tmp.4 ; <int> [#uses=1]

thread: |0.0.0.0.0.0> (0 successor states)

%tmp.19 = seteq int %tmp.18, 444 ; <bool> [#uses=1]

simplerace.cpp(21): mcp_assert(*xxx == 444);

br bool %tmp.19, label %endif.1, label %then.1

tail call void %mcp_break(sbyte* getelementptr ([41 x sbyte]* %.str_6, int 0, int 0),

sbyte* getelementptr ([15 x sbyte]* %.str_3, int 0, int 0), int 21)

This time, MCP’s search encounters the assertion failure and generates a
counterexample trace showing the exact sequence of encountered source lines
and executed instructions that led up to the assertion. In this case, though the
model checker did attempt interleavings where the child thread executed, as
expected, a counterexample was given for a case where the child thread failed
to execute before the assertion was evaluated.

Depth-first search, as expected, finds a similar (though not identical) trace af-
ter visiting only 7 states and after executing 26 instructions. Randomised search
also finds a valid counterexample trace, with performance somewhere between
the depth- and best-first results: 11 visited states and 41 executed instructions.
Run time in all cases was too rapid to accurately measure.

3.2 Dining Philosophers Algorithm

The classic dining philosophers algorithm [10] is depicted in Fig. 5. In this
thought experiment, n philosophers are seated at a round dining table with

Fig. 5. Dining Philosophers

a large bowl of spaghetti in the centre. Since spaghetti is rather slippery, it is
essential to use two forks in order to transfer it to one’s plate. The philosophers
must therefore pick up the forks on both sides of their plates, help themselves to
some spaghetti, eat it, and then return the forks to the table. A typical algorithm,
from the point of view of one of the philosophers, is as follows:

1. Pick up left fork.
2. Pick up right fork.
3. Serve spaghetti.
4. Eat spaghetti.
5. Put down right fork.
6. Put down left fork.
7. Repeat until full of pasta.

Of course, sensible philosophers would collaboratively arbitrate access to the
forks. However, our particular philosophers have a tendency to always blindly
follow rules, so there is a potential problem – if all of the philosophers pick up
(say) their left-hand-side fork at the same time, none of them are then able

to pick up their right hand fork. Sadly, this deadlock condition causes them to
collectively starve to death.

An extremely simplistic implementation coded directly for the MCP API is
as follows:

#include <mcp.h>

const int n = 6;

volatile int total_picked_up = 0;

volatile int total_waiting = 0;

class Fork

{

public:

volatile bool picked_up;

int number;

void pick_up(int by)

{

mcp_begin();

if(picked_up == true)

{

total_waiting++;

mcp_printf("%d philosophers are currently waiting.\n", total_waiting);

// If all threads are waiting, we have a deadlock.

mcp_assert(total_waiting < n);

while(picked_up == true)

{

mcp_end();

mcp_printf("Philosopher #%d is waiting for fork #%d\n", by, number);

mcp_begin();

}

total_waiting--;

mcp_printf("%d philosophers are currently waiting.\n", total_waiting);

}

mcp_printf("Fork #%d picked up by philosopher %d\n", number, by);

picked_up = true;

total_picked_up++;

mcp_end();

}

void put_down(int by)

{

mcp_begin();

mcp_printf("Fork #%d put down by philosopher %d\n", number, by);

picked_up = false;

total_picked_up--;

mcp_end();

}

};

class Philosopher

{

public:

int id;

Fork *left_fork, *right_fork;

void thread()

{

while(true)

{

left_fork->pick_up(id);

right_fork->pick_up(id);

eat();

right_fork->put_down(id);

left_fork->put_down(id);

}

}

void eat()

{

mcp_printf("Philosopher #%d eats.\n", id);

}

};

int main()

{

Fork forks[n];

Philosopher philosophers[n];

int i;

for(i=0; i<n; i++)

{

forks[i].number = i;

forks[i].picked_up = false;

philosophers[i].id = i;

philosophers[i].left_fork = forks + i;

philosophers[i].right_fork = forks + ((i+1) % n);

}

for(i=0; i<n; i++)

{

if(mcp_fork(i))

{

philosophers[i].thread();

return 0;

}

}

return 0;

}

In the interests of simplicity, rather than providing a threading model that
supports thread synchronisation, this example uses the mcp begin(). . . mcp end()
mechanism, which has the effect of making the enclosed code behave atomi-
cally. Philosophers wait for forks to become available by spinning on the fork’s
picked up member variable. This implementation approach (deliberately) intro-
duces the potential problem that an unfair scheduler could spin forever without
ever giving other threads time to execute.

On this algorithm, breadth-first search typically has an unfair advantage, in
that the the case where all threads take the same first step is generally arrived
at relatively early in the search. In the case of our example, since the threads are
started one at a time, proceeding asynchronously, MCP’s breadth-first search
doesn’t do as well as we might have hoped because the path that might have led
to finding the deadlock is already well buried in the search queue before the final
thread begins. Depth-first search tends to get stuck in the loop that spins on
the value of picked_up, as expected, and fails to find the deadlock. Randomised
search does much better, however, solving the problem for n = 6 philosophers in
less than a second6, visiting just 237 states. The counterexample trace generated
by MCP in this case may be summarised as follows:

1. Fork #0 picked up by philosopher 0.
2. Fork #1 picked up by philosopher 1.
3. Fork #2 picked up by philosopher 2.
4. Fork #3 picked up by philosopher 3.
5. 1 philosophers are currently waiting.
6. Philosopher #2 is waiting for fork #3.
7. Fork #5 picked up by philosopher 5.
8. Fork #4 picked up by philosopher 4.
9. 2 philosophers are currently waiting.

10. 3 philosophers are currently waiting.
11. Philosopher #0 is waiting for fork #1.
6 Timing based on executing MCP on Red Hat Enterprise Linux running under

VMWare on a Windows-based laptop

12. 4 philosophers are currently waiting.
13. Philosopher #2 is waiting for fork #3.
14. Philosopher #3 is waiting for fork #4.
15. 5 philosophers are currently waiting.
16. 6 philosophers are currently waiting. (Deadlock)

At the point the fault was detected, the search tree was 42 layers deep, not
including data structure creation or thread-spawning.

4 Related Work

Structurally, MCP probably bears closest resemblance to JPF (Java Pathfinder) [4],
though at the time of writing it does not approach JPF’s maturity. The most
significant differences between JPF and MCP stem from the differences between
Java and C++; for example, JPF takes advantage of reflection and the stan-
dard threading package in Java, which MCP can not since those features are not
present in C or C++. The only other model checker directly addressing C++
is Verisoft [11], which takes a completely different approach. Verisoft follows a
stateless approach to model checking while MCP follows a conventional explicit-
state model similar to SPIN [7]. Though MCP’s memory model bears some re-
semblance to that of SPIN, our approach of executing bytecode in an extended
interpreted environment differs substantially from SPIN’s approach of compiling
high-level models into C that are then compiled and executed. Currently, we use
LLVM’s just-in-time compiler functionality to compile user-supplied threading
models to machine code on-the-fly, though to-date this is not applied to the
program under test since the interpreter is relatively inexpensive in comparison
with memory management overheads.

There are, however, several model checkers that address C. SLAM [12] is
really more of a static analyser than a model checker. It relies heavily on ab-
stractions, starting from a highly abstracted form and building up to a form
that allows a complete analysis. CMC [13] uses an explicit-state approach, but
it requires some manual adaptation when dealing with complex types (pickle
and unpickle functions). Finally, there have been some attempts within NASA
to use the Valgrind tool [14, 15] as a model checker. Unfortunately, it implies
using very crude steps between transitions.

Other approaches to model checking code involve a translation step, be it
automatic or manual. For example, Bandera [16] provides model checking of Java
programs by translating automatically the program into a PVS [17], Promela [18]
or SMV [19] model.

5 Conclusions

This paper provides a ‘first-look’ at the new MCP model checker. At the time of
writing, we are about to start applying the tool to verification problems within
NASA, supporting the NGATS (Next-Generation Air Transportation System)
and Ares/Orion (Shuttle-replacement) programmes.

6 Future Work

This paper describes MCP at a relatively early stage of development. Though,
largely thanks to inheriting LLVM’s interpreter infrastructure, it does already
support the entire C++ language, more work needs to be done in order to make
it fully comparable with existing, more mature model checkers aimed at other
languages.

6.1 State Delta Compression

In the current version, state deltas reflect all changes made to memory between
checkpoints. Whilst this information is sometimes invaluable (it can be dumped
alongside instruction traces as a command-line option), there are significant po-
tential memory savings that could be achieved by compressing this information.

At a simplistic level, if a memory location is rewritten several times in se-
quence, or if two altered blocks overlap, these updates will normally occupy
separate log entries7. Coalescing overlapping log entries into single entries is an
obvious optimisation that could save significant amounts of memory.

If further memory savings are necessary, it should be possible to intro-
duce code that compresses logs using one of the well-known algorithms such
as LZW [20].

Ideally log compression would be implemented as a background thread, thereby
removing compression overhead from the critical path on multicore and shared-
memory multiprocessor systems.

6.2 User-Specified State Abstraction

Currently state abstraction operates purely at the level of state hashing, which
happens behind-the-scenes automatically. It is our intention to extend the model
checker’s API to allow blocks of memory to be excluded from hashing, and to
allow user-supplied hook functions to take over the responsibility of hashing
particular areas of memory. This should provide a generic means of supporting
arbitrary state abstraction strategies, whilst retaining the existing tool’s ease of
use for the default case.

6.3 Standard Threading Models

We intend to support a number of standard threading models, based on a variety
of real-time operating systems that are of interest to NASA. First to appear
is likely to be support for the Green Hills Integrity-178B real-time operating
system [21], possibly followed by VxWorks [22]. Support for POSIX threads [9]
is already in development.

7 Overlapping updates that arise as part of the evaluation of a single instruction are
always coalesced, however.

References

1. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California (Mar 2004)

2. Stroustrup, B.: The C++ Programming Language. Third edn. Addison-Wesley
Professional (June 1997)

3. Kernighan, B.W., Ritchie, D., Ritchie, D.M.: C Programming Language (2nd
Edition). Prentice Hall PTR (March 1988)

4. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT) V2(4) (March 2000) 366–381

5. Magee, J., Kramer, J.: Concurrency: state models & Java programs. John Wiley
& Sons, Inc., New York, NY, USA (1999)

6. Jeff Magee, Jeff Kramer, R.C., Uchitel, S.: LTSA: Labeled Transition System
Analyser http://www.doc.ic.ac.uk/ltsa/.

7. Holzmann, G.: The SPIN model checker: primer and reference manual. Addison-
Wesley (September 2003)

8. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems 13(4) (1991) 451–490

9. IEEE: IEEE 1003.1c-1995: Information Technology — Portable Operating System
Interface (POSIX) - System Application Program Interface (API) Amendment 2:
Threads Extension (C Language). (1995)

10. Dijkstra, E.W.: Hierarchical ordering of sequential processes. In: Operating Sys-
tems Techniques. (1971) 72–93

11. Godefroid, P.: Model checking for programming languages using Verisoft. In:
Symposium on Principles of Programming Languages. (1997) 174–186

12. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S., Ustuner, A.: Thorough static analysis of device drivers
(2006)

13. Musuvathi, M., Chou, A., Dill, D.L., Engler, D.: Model checking system software
with CMC. In: EW10: Proceedings of the 10th workshop on ACM SIGOPS Euro-
pean workshop: beyond the PC, New York, NY, USA, ACM Press (2002) 219–222

14. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Proceedings of PLDI 2007. (June 2007)

15. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with
bit-precision. In: Proceedings of the USENIX’05 Annual Technical Conference.
(April 2005)

16. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S., Zheng, H.:
Bandera: Extracting finite-state models from Java source code. In: Proceedings of
the 22nd International Conference on Software Engineering. (June 2000)

17. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: CAV ’96: Proceedings of
the 8th International Conference on Computer Aided Verification, London, UK,
Springer-Verlag (1996) 411–414

18. SPIN web site: Promela language reference
http://spinroot.com/spin/Man/promela.html.

19. CMU: The SMV system http://www.cs.cmu.edu/ modelcheck/smv.html.

20. Welch, T.A.: A technique for high-performance data compression. IEEE Computer
17(6) (1984) 8–19

21. Green Hills Software: Integrity-178B real-time operating system
http://www.ghs.com/products/safety critical/integrity-do-178b.html.

22. Wind River: VxWorks real-time operating system
http://www.windriver.com/vxworks/.

